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Linear-response conductance of a two-terminal Aharonov-Bohm �AB� interferometer is an even function of
magnetic field. This phase symmetry is not expected to hold beyond the linear-response regime and in simple
AB rings the phase of the oscillations changes smoothly �almost linearly� with voltage bias. However, in an
interferometer with a quantum dot in its arm, tuned to the Coulomb blockade regime, experiments indicate that
phase symmetry seems to persist even in the nonlinear regime. In this paper we discuss the processes that break
AB phase symmetry and show that breaking of phase symmetry in such an interferometer is possible only after
the onset of inelastic cotunneling, i.e., when the voltage bias is larger than the excitation energy in the dot. The
asymmetric component of AB oscillations is significant only when the contributions of different levels to the
symmetric component nearly cancel out �e.g., due to different parity of these levels�, which explains the sharp
changes in the AB phase. We show that our theoretical results are consistent with experimental findings.
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I. INTRODUCTION

The Aharonov-Bohm �AB� effect allows for studying the
transmission phase through a mesoscopic structure, e.g., a
quantum dot �QD�, by placing it in one of the arms of an AB
interferometer.1,2 In a two-terminal interferometer the phase
of the AB oscillations in the linear-response conductance can
only assume the values 0 or � �i.e., the oscillations have
either maximum or minimum at zero magnetic field�, even
though the transmission phase through the QD can change
continuously. This phase symmetry, i.e., the property that the
linear-response conductance of a two-terminal device is an
even function of magnetic flux, can be understood within a
one-particle picture3 and is, in fact, a manifestation of more
general linear-response Onsager-Büttiker symmetries.4,5 De-
viations from phase symmetry in two-terminal devices in the
nonlinear regime have been studied theoretically,6–8 as well
as in experiments on AB cavities9 and AB rings.10 The re-
sulting phase of the AB oscillations changes smoothly �al-
most linearly� with increasing voltage bias.10

Rather puzzlingly, a recent experiment,11 which studied a
voltage-biased AB interferometer with Coulomb blockaded
QDs in its arms, observed AB oscillations which remained
practically symmetric. The phase of the oscillations changed
with voltage bias, Vsd, in a highly nonmonotonous fashion: it
remained close to 0 or � but switched abruptly between
these two values as a function of the bias voltage, with the
first switching occurring when the voltage about equal to the
level spacing to the first excited state �, i.e., near the onset of
inelastic cotunneling.

Indeed, breaking of the phase symmetry in the regime of
inelastic cotunneling have not been addressed theoretically
thus far. In particular, the finite bias threshold for the inelas-
tic cotunneling renders inapplicable the methods based on
expansion in powers of the voltage bias Vsd,7 and thus cannot
explain the experimental observations. In this paper we ad-
dress the phase asymmetry of AB oscillations in a QD inter-

ferometer with a Coulomb blockaded dot by systematically
analyzing transport processes of different order in lead-to-
lead tunnel coupling. We demonstrate that the bias depen-
dence of the AB phase is highly nonmonotonous. In particu-
lar, �i� the oscillations indeed remain symmetric up to the
onset of inelastic cotunneling �eVsd��� �i.e., with AB phase
0 or ��, in agreement with experiments; �ii� with onset of
inelastic cotunneling, AB oscillations acquire nonzero asym-
metric component, which however is usually smaller than the
symmetric component, the oscillations thus remaining nearly
symmetric; �iii� the asymmetric component may become
dominant if the contributions of different levels to even AB
oscillations nearly cancel out �e.g., due to different parity of
these levels�.12 The theoretical findings are supported by the
in-depth analysis of the experimental data of Ref. 11.

II. THEORETICAL FORMULATION

We consider an AB interferometer schematically shown in
Fig. 1�a�. One arm of the interferometer contains a QD which
is assumed to be in Coulomb blockade regime. The current

FIG. 1. �Color online� �a� Schematic representation of the de-
vice studied in this paper. Solid red and dash blue arrows show
cotunneling processes and direct lead-to-lead tunneling, respec-
tively. �b� Example of a lowest-order cotunneling process contrib-
uting to AB oscillations: the dot electron tunnels to the right lead
and an electron from the left tunnels to the dot, interfering with the
process where an electron moves from left to right through the open
arm.

PHYSICAL REVIEW B 80, 035416 �2009�

1098-0121/2009/80�3�/035416�7� ©2009 The American Physical Society035416-1

http://dx.doi.org/10.1103/PhysRevB.80.035416


can flow either by means of cotunneling via the QD or by
direct lead-to-lead tunneling through the open arm of the
interferometer,13 whereas the number of electrons occupying
the QD does not change.

We describe the system by Hamiltonian H=HL+HR+HD
+V+W, where H�=�EEc�E

+ c�E is the Hamiltonian of elec-
trons in lead �=L ,R; E labels energy states within one lead.
HD=����d�

+d� is the Hamiltonian of the QD, which contains
only one electron and has energy levels ��. c�E destroys a
lead electron in state �E, d� destroys QD state �.14

W and V describe, respectively, electron transitions be-
tween the leads through the open arm or through the arm that
contains the QD. Due to the Coulomb blockade, the number
of electrons in the QD after the electron transfer remains
unchanged but the process can be accompanied by virtual
change in the QD state. These terms in the Hamiltonian are
given by

W = �
�E

�
��E�

W�;��e
i����c�E

+ c��E� �1a�

V = �
�,��

�
�E

�
��E�

V�;��
�;��d�

+c�E
+ c��E�d��, �1b�

where W�;�� and V�;��
�;�� are real and � is the magnetic flux

through the interferometer ��RL=−�LR=�, �LL=�RR=0�.14

We calculate the lead-to-lead current perturbatively in
powers of V and W. This calculation, described in detail in
Sec. 2 of Appendix, is similar to that used, e.g., by Appel-
baum for Kondo problem15 �identical results were obtained
using the Keldysh formalism�. The method consists of calcu-
lating the quantum-mechanical probability for an electron to
be transferred from one lead to another, which is then aver-
aged over initial states with the correct weights and summed
over all final and intermediate virtual states. The essential
modification of this approach necessary for a nonequilibrium
problem is the correct choice of zeroth-order level occupa-
tion numbers.16 These occupation numbers, P��Vsd�, al-
though of zero order in the tunneling elements V ,W, are
dependent on Vsd. In particular, at low bias, only the popu-
lation of the ground state of the QD, P1�Vsd�, significantly
differs from zero. When the bias exceeds the threshold for
onset of inelastic cotunneling, Vsd����2−�1, the popula-
tions of excited QD states start to grow. The dependence of
these populations on the source-drain bias was studied in
Ref. 12.

III. BREAKING OF PHASE SYMMETRY

It is easy to see that the second-order processes contrib-
uting to the AB oscillations �which necessarily involve one
tunneling amplitude through the open arm, W, and one
through the dot, V�, such as the one depicted in Fig. 1�b�
�where �0 represents the open arm�, are necessarily symmet-
ric with respect to magnetic field. The asymmetric AB oscil-
lations appear when we account for higher-order tunneling
processes. Typical third-order contributions to AB oscilla-
tions are depicted in Fig. 2. As an example, the probabilities
of the processes shown in Figs. 2�a� and 2�b�, are, respec-
tively,

4�R� �WR;Lei���VR;R
1;2 VR;L

2;1

�1 + EL − �2 − ẼR + i0+�	�EL − ER� , �2a�

4�R� �VR;L
2;1 ��VR;R

2;1 WR;Lei�

EL − ER + i0+ �	�EL + �1 − ẼR − �2� , �2b�

�R represents the real part�. These factors consist of the
second-order tunneling amplitude �which contains the energy
denominator� multiplied by the complex conjugate of the
first-order tunneling amplitude: this is reflected in the obvi-
ous fashion in Fig. 2, upon which the following discussion is
built. There are also processes �not shown here� in which
instead of an electron one considers tunneling of a hole.

In order to obtain their contributions to the current, the
probabilities in Eq. �2� are multiplied by the factor

P1�Vsd�fL�EL��1− fR�ER�	�1− fR�ẼR�	 �which also limits pos-

sible intermediate states� and integrated over EL ,ER and ẼR.
The asymmetric contribution to AB oscillations results

only from the imaginary part of the denominators in Eqs. �2�,
which we treat according to prescription 1 / �E+ i0+�=1 /E
− i�	�E�.17 The delta function means that only processes in
which the intermediate state lies on the same energy shell
with the initial and the final states, which for our example

means that EL+�1=ER+�1= ẼR+�2, contribute to AB oscilla-
tions odd in magnetic field.

The asymmetric contribution due to the process �Eq. �2a�	
is thus given by

− 2WR;LVR;R
1;2 VR;L

2;1 	��1 + EL − �2 − ẼR�	�EL − ER�sin � .

�3�

On the other hand, the asymmetric contribution of the pro-
cess �Eq. �2b�	 is given by the exact same expression but

FIG. 2. �Color online� Examples of different third-order pro-
cesses, whose real parts contribute to the current: �a� and �b� �or �c�
and �d�	 are two processes whose contributions to odd AB oscilla-
tions mutually cancel out; processes �a� and �c� are elastic, whereas
�b� and �d� are inelastic. �e� �or �g�	 is an example of an elastic
�inelastic� third-order process which gives nonzero contribution to
the odd AB oscillations. The other process constructed from the
same matrix elements and beginning from the same initial state, �f�
�or �h�	, does not contribute to the current.
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with the opposite sign and thus the asymmetry contribution
is canceled between these two processes. This is no surprise.
The first process �Fig. 2�a�	 corresponds to the dot starting
with an electron in the ground state. Then this electron tun-
nels to the right and an electron from the left tunnels to the
excited state, then the electron tunnels from the excited state
to the right lead and another electron tunnels from the same
lead to the ground state ending at the same initial state but
one electron transferred from left to right. This probability
amplitude interferes with the amplitude of one-electron tun-
neling directly through the other arm from left to right. The
second process �Fig. 2�b�	 starts with the same initial state,
and involves an electron tunneling through the other arm to
the right lead, and then an electron from the right lead tun-
neling to the excited state, while the ground-state electron
tunnels to the right lead. This amplitude, which again in-
volves one electron moving from left to right, interferes with
the amplitude where the dot electron tunnels to the right and
an electron from the left tunnels to the excited state. These
two processes, which have the same weight as they start
from the same initial configuration, involve the exact same
matrix elements, but effectively correspond to electron tra-
versing the AB ring in opposite directions, thus leading to the
cancellation of the term odd in magnetic field. Similar can-
cellation occurs for the processes starting with the QD in its
exited state, Figs. 2�c� and 2�d�.

However, let us examine the process shown in Fig. 2�e�.
The process that should cancel its asymmetric contribution is
depicted in Fig. 2�f�. This latter process, however, does not
contribute to the current, as it describes electron backscat-
tered into the same lead. Thus, the contribution of the elastic
process in Fig. 2�e� gives rise to AB oscillations odd in mag-
netic field. Figures 2�g� and 2�h� provide an example of a
similar noncanceling inelastic process.

The distinctive feature of the processes in Figs. 2�e� and
2�g� is that prior to electron transfer from left to right, an
electron is being excited to a state within the same lead.
When this part of the process is singled out as a one-particle
amplitude in the other process made up of the same elements
and beginning from the same initial state, Figs. 2�f� and 2�h�,
we obtain processes which only involve excitation within the
same lead, and thus do not contribute to the current, i.e., do
not contribute to the measured AB oscillations.

Since such a preliminary excitation is possible only when
the QD is initially in its excited state, whose population dif-
fers from zero only when eVsd��, breaking of the phase
symmetry may happen only after the onset of inelastic cotun-
neling.

The asymmetric contribution to AB oscillations is of
higher order in the lead-to-lead coupling than the symmetric
contribution. Thus, the asymmetry should be weak every-
where, except the bias values where second-order processes
vanish due to canceling contributions from different levels,
i.e., when phase switching occurs.12 Overall, this means that
the phase of AB oscillations is not a monotonous function of
bias: it is usually very close to 0,� but deviates significantly
from these values when phase switching occurs.

IV. DISCUSSION AND COMPARISON TO THE
EXPERIMENT

Here we report calculations with a three level dot, similar
to that used in Ref. 12 in connection to the experiments of
Ref. 11: the levels have alternating parity and different
strength of coupling to the leads.

The AB component of differential conductance obtained
within the perturbation framework described above is shown
in the upper left panel of Fig. 3. One can see that the phase of
the AB oscillations changes between 0 and �. The lower left
panel of Fig. 3 depicts the asymmetric component of AB
oscillations extracted from the data shown in the upper left.
The right part of Fig. 3 presents, respectively, total �upper
panel� and asymmetric �lower panel� contributions to AB
oscillations as obtained from the experimental data of Ref.
11.

In both theoretical and experimental color plots one can
observe several important features: �i� the phase of AB os-
cillations switches sharply between values close to 0 and
�;11,12 �ii� in the figures showing total AB signal any signifi-
cant asymmetry is seen only in the regions corresponding to
phase switching, e.g., close to Vsd= 
0.2 mV in the upper
part of Fig. 3; �iii� the asymmetric component of AB oscil-
lations is zero for bias below the onset of inelastic cotunnel-
ing but nonzero essentially everywhere above this onset.

In order to illustrate the last point we show in Fig. 4 the
mean differential conductance through the interferometer to-
gether with the power of the asymmetric component, calcu-
lated as P�Vsd�=
�Bmin

BmaxdBGasym
2 �B ,Vsd� / �Bmax−Bmin�, where

Gasym�B ,VSD� is the asymmetric component of the differen-
tial conductance. For the theoretical model limits Bmin and
Bmax are restricted to one period of AB oscillations. At the
onset of inelastic cotunneling the differential conductance
exhibits a jump, which is due to increase in the available
conductance processes. We see that the power of the asym-
metric component mimics the onset of inelastic cotunneling,
which confirms our theoretical predictions. The nonzero
value of the asymmetric AB oscillations before the onset of
inelastic cotunneling in experimental data most likely results
from finite extension of the electron density throughout the
device �i.e., not all localized to QD�. In this case the electric
potential within the device becomes a function of magnetic
field, which leads to asymmetry of AB oscillations,7 which
however grows smoothly with the bias voltage.10

A noticeable difference between the experimental and the-
oretical data is that the asymmetric component of the experi-
mental signal seems mainly even in bias while the signal is
mostly odd in the calculations. Our theoretical study showed
that the even bias component is nonzero only when the dot
levels are not symmetrically coupled to the leads. A proper
treatment of this even contribution requires taking higher-
order terms in the expansion of the current in lead-to-lead
tunneling matrix elements, which is beyond our current cal-
culation. Therefore we limited our theoretical calculation to
the symmetric voltage component and we chose the param-
eters that make the theoretical curves resemble the experi-
mental ones for positive bias side. Another difference be-
tween the theory and the experiments is that in the
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experimental data the asymmetric component of the AB con-
ductance changes sign many times. This feature may be the
result of the weakness of the asymmetric AB signal �only
about factor of 5 above the noise�, the larger number of dot
levels in the experiment or the interplay between the cou-
pling strengths of different levels to the leads.12 Another op-
tion is additional influence of the electrostatic AB effect,
owing to the finite extension of the interferometer arms.10

V. CONCLUSION

We addressed breaking of phase symmetry in a quantum-
dot AB interferometer in cotunneling regime. We showed
that AB oscillations remain strictly symmetric up to the onset
of inelastic cotunneling and discussed the processes respon-
sible for breaking of the phase symmetry above this onset.
As asymmetric component of AB oscillations is of higher

FIG. 3. �Color online� Color plots of the differential conductance obtained from the theoretical model presented here �left panels� and
from the experimental data of Ref. 11 �right panels�. The upper and lower panels show, respectively, full and asymmetric components of the
conductance.

FIG. 4. �Color online� Power of asymmetric AB oscillations and differential conductance �rescaled� for theoretical model �left� and for
experimental data �right�.
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order in lead-to-lead tunneling than the symmetric one, the
AB phase remains close to values 0 and �. The exception are
the bias values where phase switching occurs and the asym-
metric component of AB oscillations becomes dominant. Al-
together this results in AB phase changing sharply but con-
tinuously between values 0 and �. We show that our
theoretical findings are in excellent agreement with the ex-
perimental data of Ref. 11.
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APPENDIX: DETAILS OF CALCULATION AND
GENERALIZATION TO THE CASE OF MULTICHANNEL

LEADS AND ARBITRARY MAGNETIC FIELD
DEPENDENCE

1. Theoretical formulation for the case of multichannel leads
and arbitrary flux dependence of the matrix elements

We consider an AB interferometer schematically shown in
Fig. 1�a�. One arm of the interferometer contains a QD which
is assumed to be in the Coulomb blockade regime. The cur-
rent can flow either by means of cotunneling via the QD or
by direct lead-to-lead tunneling through the open arm of the
interferometer while the number of electrons occupying the
QD does not change.

We describe the system by the Hamiltonian H=HL+HR

+HD+ Ṽ, where H�=��,k���kc��k
+ c��k is the Hamiltonian of

electrons in lead �=L ,R, � labels different lead channels
and k labels energy states within one channel. HD
=����d�

+d� is the Hamiltonian of the QD, which contains
only one electron and has energy levels ��, c��k destroys a
lead electron in state ��k, and d� destroys the QD state �.

Electron transitions between the leads are described by
the term

Ṽ�B� = �
�,��

�
��k

�
����k�

Ṽ��;����
�;�� �B�d�

+c��k
+ c����k�d��.

�A1�

In case of the two-arm interferometer studied in this paper
one can separate the terms responsible for the transport via
each arm

Ṽ�B� = V�B� + W�B� , �A2�

where V�B� describes electron tunneling via the QD and
W�B� describes tunneling via the open arm of the interferom-
eter. Due to Coulomb blockade, the number of electrons in
the QD after the electron transfer remains unchanged,
��d�

+d�=1. If, in addition, we choose to account for the mag-
netic field only via the AB phase, the decomposition can be
written explicitly as

Ṽ��;����
�;�� �B� = V��;����

�;�� + W��;����	�;��e
i����, �A3a�

W�B� = �
��k

�
����k�

W��;����e
i����c��k

+ c����k� �A3b�

V�B� = �
�,��

�
��k

�
����k�

V��;����
�;�� d�

+c��k
+ c����k�d��,

�A3c�

where W��;���� and V��;����
�;�� are real, and � is the magnetic

flux through the interferometer associated with the magnetic
field B ��RL=−�LR=� and �LL=�RR=0�.

The decomposition of Eq. �A3� is optional, as the basic
statements regarding the phase symmetry breaking in cotun-
neling transport, obtained in this paper, can be proved using

only the properties of the matrix elements Ṽ��;����
�;�� �B� with

respect to time reversal. �This is important for interferom-
eters of more complicated geometry, e.g., with more than
two arms.� For the choice of the basis states that are invariant
under time-reversal transformation �i.e., real�, the matrix el-
ements satisfy

Ṽ��;����
�;�� �B� = Ṽ����;��

��;� �− B� = �Ṽ��;����
�;�� �− B�	�. �A4�

2. General expression for the current

In order to calculate the lead-to-lead current we employ a

perturbative expansion in the powers of Ṽ, similar to the one
used, e.g., by Appelbaum for the Kondo problem.15 Up to

order Ṽ3, the current is expressed as I��B�= I�←�̄�B�
− I�̄←��B�, where

I�←�̄�B� =
e

2��
� d�� d��� �

��;����

T��;�̄��
�;�� ��,��,B��	��� + � − ��� − ���P��f �̄�����1 − f����	 , �A5a�

T��;�̄��
�;�� ��,��,B� 
 �2��2N�N�̄��Ṽ��;�̄��

�;�� �B��2 + 2R��Ṽ��;�̄��
�;�� �B���A��;�̄��

�;�� ��,��,B�	� , �A5b�
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A��;�̄��
�;�� ��,��,B� = �

��
�

����

N��� d��� Ṽ��;����
�;�� �B�Ṽ����;�̄��

��;�� �B�

��� + �� − ��� − �� + i

�1 − f������	 −

Ṽ����;�̄��
�;�� �B�Ṽ��;����

��;�� �B�

��� + �� − ��� − � + i

f������� . �A5c�

In these equations N� is the density of states in lead �,
whereas f����=1 / �exp����−��� / �kBT�	+1	� is the Fermi dis-
tribution function in this lead. The difference of the lead
chemical potentials, ��, is given by the source-drain bias,
eVsd=�L−�R.

The essential modification to the perturbative approach,15

necessary in a nonequilibrium problem, is the correct choice
of zero-order level occupation numbers, which can be done
on the basis of the second-order transition rates.16 These oc-

cupation numbers, P��Vsd�, although of zero order in Ṽ�B�,
are dependent on the source-drain bias, Vsd. In particular, at
low bias Vsd, only the population of the ground state of the
QD, P1�Vsd�, significantly differs from zero. The situation
changes when the bias exceeds the threshold for the onset of
inelastic cotunneling, Vsd��=�2−�1, after which the popu-
lations of excited QD states start to grow. The dependence of
these populations on the source-drain bias was studied in
more detail in Ref. 12.

3. Identifying the processes responsible for breaking of the
phase symmetry

As readily follows from Eq. �A4�, the current at order Ṽ2

is symmetric in magnetic field since

�Ṽ��;�̄��
�;�� �B��2 = �Ṽ��;�̄��

�;�� �− B��2. �A6�

Any deviations from the phase symmetry come about due
the second term in Eq. �A5b�. We expand the denominators
in the second-order tunneling amplitude, Eq. �A5c�, accord-
ing to the standard prescription, 1 / ��+ i
�=1 /�− i�	���, and
take into account that, due to Eq. �A4�,

�Ṽ��;�̄��
�;�� �B�	�Ṽ��;����

�;�� �B�Ṽ����;�̄��
��;�� �B� = Ṽ��;�̄��

�;�� �− B�

��Ṽ��;����
�;�� �− B�Ṽ����;�̄��

��;�� �− B�	�, �A7�

i.e., the real part of this expression is even in magnetic field.
�Here and below we discuss only the first, “electron,” term in
Eq. �A5c� but the second, “hole,” term can be treated simi-
larly.� Thus, the contribution to AB oscillations odd in mag-
netic field may result only from the terms proportional to the
delta functions, i.e., it comes from the processes in which the
intermediate state lies on the same energy shell with the ini-
tial and the final states, �+��=��+���=��+���.

17

We now need to distinguish three kinds of processes: �i�
elastic process in which no change in the QD state occurs,
i.e., �=��=��; �ii� elastic processes in which the intermedi-
ate state of the QD is different from its initial and final states,
i.e., �=�����; and �iii� inelastic processes, ����.

For type �i� processes we take advantage of the two lead
geometry �i.e., that �� is limited to � , �̄� to prove that, e.g.,
for ��=�

�
�����

�Ṽ��;�̄��
�;� �B�	�Ṽ��;���

�;� �B�Ṽ���;�̄��
�;� �B�

= �
�����

�Ṽ��;�̄��
�;� �− B�	�Ṽ��;���

�;� �− B�Ṽ���;�̄��
�;� �− B� .

�A8�

A similar relation holds for ��= �̄. Therefore these processes
do not contribute to odd AB oscillations.

The same argument cannot be applied to the summation
over � ,�� ,�� due to the presence of factor P� and Fermi
functions in this summation. �These factors, however, can be
taken out of the summation in case of degenerate levels,
which are equally populated.�

Before the onset of inelastic cotunneling the inelastic pro-
cesses, �iii�, are prohibited by energy conservation �however,
let us point out that these processes will also contribute to
AB oscillations since they are indistinguishable from lower-
order inelastic processes�. The processes of type �ii� are pos-
sible but the Fermi factors in Eq. �A5c� mean that the inter-
mediate states on the same energy shell with the initial and
the final states are not available. Thus, no breaking of phase
symmetry is possible before the inelastic cotunneling sets on.

4. Asymmetric term for a two-arm interferometer

We now quote the result for the case considered in the
main text of this paper, i.e., when the decomposition of Eq.
�A3� applies. The lowest-order contribution to AB oscilla-

tions is proportional to the oscillating part of �Ṽ��;����
�;�� ����2

which is

2V��;�̄��
�;� 	�,��W��;�̄�� cos � . �A9�

The Kroneker symbol 	�,�� reflects the fact that the processes
changing the state of the QD do not contribute to the leading
term in AB oscillations.18 The cosine function in Eq. �A9�,
cos �, tells us that these oscillations are even in magnetic
field.

The lowest-order contribution to the AB current asymmet-

ric in magnetic field is I�
asymm���= Ĩ�←�̄

e + Ĩ�←�̄
h − Ĩ�̄←�

e − Ĩ�̄←�
h ,

where ��=L ,R= 
1�
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Ĩ�←�̄
e =

e

2��
� sin ��2��3N��N�̄�2 �

�,��,��,��

P��� d��f �̄����

� ��
�

�1 − f���� + ��� − ���	�1 − f �̄��� + ��� − ���	V��;�̄��
�;�� W��;�̄��V�̄��;�̄��

�;�� − �
��

�1 − f�����	

��1 − f �̄��� + ��� − ����	W��;�̄��V��;�̄��
��;�� V�̄��;�̄��

��;�� � , �A10a�

Ĩ�←�̄
h = −

e

2��
� sin ��2��3�N��2N�̄ �

�,��,��,��

P��� d��f �̄����

���
�

�1 − f���� + ��� − ���	f�����V��;�̄��
�;�� W���;�̄��V��;���

�;�� − �
��

�1 − f�����	

�f���� + ��� − ����W��;�̄��V���;�̄��
��;�� V��;���

��;�� � . �A10b�

The asymmetric nature of these terms is evident from their proportionality to the sine, sin �, of the magnetic flux.
The first and the second terms in the curly brackets in Eqs. �A10� describe, respectively, inelastic and elastic processes. In

the case when �=��=�� the two terms cancel out, i.e., the only terms that contribute are those that involve a change in the QD
state �types �ii� and �iii� processes in the discussion above	. We intentionally kept the order of the matrix elements from Eqs.
�A5�, so one can readily see that the only processes that give nonzero contribution to the asymmetric current are those that

begin with the creation of an electron-hole pair in one of the leads �matrix element V�̄��;�̄��
�;�� or V��;���

�;�� with �����.
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